
HANSER automotive 5 / 20191 © Carl Hanser Verlag, München

M E A S U R I N G – T E S T I N G – D I A G N O S T I C S

W
e live in a networked world. In-
creasingly more demanding
customer requirements and ri-

sing global competition lead to perma-
nent pressure on all operating proces-
ses and procedures. Due to the resul-
ting increase in complexity, companies
face the challenge of continuously ques-
tioning and improving their operating

processes. The quality of operating pro-
cesses is revealed by the degree of „re-
laxed“ mastery of complexity.

Here standards play a crucial role.
Standards establish a uniform worldwi-
de basis for the exchange of compo-
nents. They are based on provable natu-
ral scientific arguments and pursue ma-
croeconomic goals.

Germany in particular has established
an outstanding position in worldwide
standardization, especially in the field of
automobile electrical/electronic sys-
tems. The large majority of new and in-
novative standards in this area was ini-
tiated in Germany and advanced with
great dedication by experts in the re-
spective specialized fields.

OTX is a standardized, domain-specific programming language (DSL) for the reliable

and barrier-free exchange of testing knowledge in development, production, after-

sales, and also within the vehicle. OTX plays a central role in resolving problems in

diagnostics within a new electronics architecture.

©
 e

m
ot

iv
e,

 a
do

be
.s

to
ck

.c
om

/K
as

pa
rs

 G
rin

va
ld

s

>>> DIAGNOSTICS DEVELOPMENT PROCESS

OTX in practice

© Carl Hanser Verlag, Munich. Reproductions, even in extracts, are non permitted without licensing by the publisher.

2HANSER automotive 5 / 2019www.hanser-automotive.de

M E A S U R I N G – T E S T I N G – D I A G N O S T I C S

Exchangeability beyond
process limits

The exchangeability and long-term avai-
lability of testing knowledge are proba-
bly the most important features of OTX.
Due to their widespread use, familiar
programming languages (Java, C#, Py-
thon, etc.) have considerable advan-
tages for specialized tasks on a few test
stands, where exchangeability and long-
term availability play a minor role. But
when it comes to executing the same,
quality-assured test logic in many diffe-
rent areas and a variety of environmen-
tal conditions, I believe OTX is indispen-
sable. OTX handles the linking of all ex-
ternal systems in a very elegant way like
hardly any other ISO standard.

OTX according to
ISO 13209

The OTX standard is of special importan-
ce due to its integrative and harmoni-
zing effect. OTX as a domain-specific
programming language integrates se-
amlessly with existing standards for di-
agnostics communication, such as ODX
and MVCI. Like hardly any other stan-
dard, OTX is also able to converge diffe-
rent, previously separate standards,
even outside of traditional vehicle diag-
nostics. Examples include access to
hardware-in-the-loop test stands (ASAM
XIL), access to runtime systems for
measuring and calibrating (ASAM
MCD3-MC), and the description of tests
in automated driving.

The goal of OTX is the reliable and
barrier-free exchange and long-term
availability of testing knowledge in deve-
lopment, production, and after-sales.
OTX stands for „Open Test sequence
eXchange“ and is standardized in ISO
13209 as an exchange format. OTX is a
meta-language for the description of
executable test logic with verifiable qua-
lity. It is human and machine readable,
and independent of technologies, ser-
vice providers, and tool manufacturers.
OTX is open, stable, and platform as
well as technology-neutral. OTX strictly
separates the test logic and runtime im-
plementation. Active development of
the standard is ongoing within ISO and

ASAM, and it has broad-based tool sup-
port.

An OTX test sequence consists of
one or more activities (also see Figure
3). All activities are thematically grouped
in libraries, the OTX extensions. The co-
re library contains all activities for the
general test logic, such as procedure
calls, assignments, branches, loops,
activities for parallel execution, and error
handling. All 36 OTX extensions add
specific functions to the core, which is
also capable of stand-alone execution
(see Figure 1). In addition to extensions
for vehicle diagnostics, HMI, and access
to arbitrary external systems, there are
numerous extensions that can map vir-
tually any aspect for testing in the auto-
motive industry. OTX is also readily ex-
pandable in compliance with standards.

Figure 1.

OTX libraries

(Extensions).

(© emotive)

Figure 2. Linking external systems in OTX. (© emotive)

»

© Carl Hanser Verlag, Munich. Reproductions, even in extracts, are non permitted without licensing by the publisher.

HANSER automotive 5 / 20193 © Carl Hanser Verlag, München

M E A S U R I N G – T E S T I N G – D I A G N O S T I C S

Linking of external
systems via OTX mapping

OTX fundamentally separates the test
logic from the runtime implementation.
Only one interface (signature) is descri-
bed within the test logic. One of multi-
ple runtime implementations can be as-
signed to this interface at the time of
execution. EMOTIVE calls this process
OTX mapping. It means linking the para-
meters of a signature to the property of
an actually implemented class within a
binary file in a graphical mapping editor.
Thus OTX supports:

W Mapping to graphical interfaces
(screen mapping), for example a
WPF interface

W Mapping of arbitrary device drivers
(device mapping), for example to
query the ignition status via a DLL

W Mapping environmental data (con-
text mapping), for example to deter-
mine the test location

W Mapping status information (state
mapping), for example to output the
flash progress (see Figure 2)

All required mapping data for a specific
target environment are stored in an
XML file. Solely by exchanging this file,
the same test logic can be executed in
various target environments. A nonexis-
tent environment can also be simulated
using what is called proxy mapping.

The highly simplified example
shown in Figure 3 illustrates OTX map-
ping for various target systems based
on a setup procedure for calibrating tire
pressure sensors. First the sensor ID for
various environments has to be input. In
production this is automated via the test
system, in development it is done ma-
nually using a barcode scanner. What

exactly will be executed in the respecti-
ve environment is parametrized in the
context mapping. Next the input value is
validated. If the value is plausible, a rou-
tine for calibrating the sensors is start-
ed. Subsequently the state of this routi-
ne is monitored and shown in parallel.
The various environments are parame-
trized in the screen mapping. In pro-
duction, representation is on a screen in
the test system, while a generic OTX
tester is used in development and the
vehicle’s infotainment system is used in
the workshop. In the end the result is
determined, logged, and output.

Figure 4 shows the process for the
step-by-step development of this setup
sequence. It begins with an abstract spe-
cification of the test logic, similar to Mi-

crosoft Visio. This results in an initial OTX
document. In the realization phase, all
specifications are implemented with the
help of a test step library. The result is a
complete, executable OTX document
that is tested in the following step. This
leads to a standardized PTX file contai-
ning all OTX documents, which can be
shared with other departments. Each de-
partment now adds the environment-
specific OTX mapping and generates
what is called a PPX file. The PTX file is
standardized and platform-neutral. The
PPX file contains all PTX files and plat-
form-specific information in the form of
the OTX mapping. Subsequently the sa-
me PPX file can be executed in various
target environments. In application 1, the
sequence is executed within an existing

Figure 3.

Application example:

calibrating tire

pressure sensors

(simplified). (© emotive)

Figure 4. Step-by-step development of a setup sequence. (© emotive)

© Carl Hanser Verlag, Munich. Reproductions, even in extracts, are non permitted without licensing by the publisher.

4HANSER automotive 5 / 2019www.hanser-automotive.de

M E A S U R I N G – T E S T I N G – D I A G N O S T I C S

system in production or after-sales. Appli-
cation 2 executes the same PPX within a
generic pilot tester in development.

Tool support

Numerous established manufacturers
are offering software tools for OTX in
the course of the nearly completed
standardization process. The OTX tool-

chain from EMOTIVE shown in Figure 5
essentially consists of the OTX develop-
ment environment „Open Test Frame-
work“ (Windows), the OTX runtime en-

vironment „OTX Runtime“ (Windows
and Linux), and the generic OTX tester
„Open Test Player“ (Windows, iOS and
Android planned). It is currently in pro-
ductive use by several vehicle manu-
facturers in development, production,
after-sales, and also within the vehicle.

Conclusion

Like hardly any other standard in the au-
tomotive environment and also within
traditional vehicle diagnostics, OTX is
able to exchange quality-assured testing
knowledge across process boundaries,
with unchanged execution under a wide
variety of environmental conditions. It
makes the diagnostics development
process more reliable and productive
with the support of suitable software
tools. W (oe)
» www.emotive.de

Figure 5: OTX toolchain by EMOTIVE. (© emotive)

Dr.-Ing. Jörg Supke is the founder and CEO of emotive GmbH & Co. KG. He leads
the German ISO working group for ODX, OTX, and MVCI at the VDA, is a member of
the ASAM Technical Steering Committee, and leads various working groups for the
standardization of OTX.

© Carl Hanser Verlag, Munich. Reproductions, even in extracts, are non permitted without licensing by the publisher.

