
HANSER automotive 8/20202 © Carl Hanser Verlag, München

T
he OTX (Open Test sequence eX-
change) standard according to ISO
13209 is a domain-specific langua-
ge (DSL) for the reliable description
of exchangeable and executable

testing logic in the automobile industry.
Diagnostics sequences can be created
graphically and simultaneously descri-
bed in sufficient detail so the same tes-
ting logic can be executed in any of va-
rious target environments, without bar-

riers. The standard is mature and com-
prehensive enough to replace existing
solutions in development, production
and the workshop. Possible uses for
OTX range from describing simple
functional tests in development to start-
up procedures in production to fully ge-
neric tester applications with guided
troubleshooting in customer service.
OTX is open and stable as well as plat-
form and technology-neutral.

Exchangeability and conformity
with standards

The standard alone is not sufficient to
ensure that the promising potential is
more than just advertising messages,
but can actually be realised in practice.
Processes have to be adapted, tools de-
veloped, and comprehensive thinking
fostered. OTX alone does not ensure ex-
changeability. Here exchangeability me-

OTX IN PRACTICE

Barrier-free exchange of
test sequences
Mastering complexity is a challenge of our time. This can only be accomplished
through interdisciplinary collaboration. Integrated, standardised processes
are a prerequisite. Standards establish transparency and exchangeability. They
form the basis for continuous improvement, consistent service provision
and avoiding redundancies.

 ©
 e

m
ot

iv
e

© Carl Hanser Verlag, Munich. Reproductions, even in extracts, are non permitted without licensing by the publisher.

3HANSER automotive 8/2020www.hanser-automotive.de

DEVELOPMENT DEVELOPMENT TOOLS

ans the use of unaltered OTX docu-
ments in various target systems. Put
another way: The same testing logic has
to be executable in a wide variety of
systems and lead to the same functio-
nal results. In order to ensure this ex-
changeability, the test sequences (OTX
documents) have to meet the following
criteria:
W Validity
W Completeness
W Target system independence

Valid OTX data must use the correct
syntax – corresponding to the data mo-
del – and not violate any critical seman-
tic checker rules. This is not a problem in
most cases. Mistakes that occur here
tend to be gross errors that are quickly
located.

Furthermore, a test sequence is
complete when the entire testing logic
exists in OTX. Problem: The definition of

what the testing logic encompasses de-
pends on the specific case. Opinions
can vary widely. Ultimately, the question
is what one wants to achieve with OTX.
Two extreme cases illustrate this point:
In the first, OTX merely calls a function
in an external system that contains the
entire testing logic. In the second case,
the entire tester including the HMI, ad-
ministration of roles etc. exists in OTX.
The first case may be valid, but is not
complete and therefore also not exchan-
geable. The second case is both valid

and complete, but pushes the bounda-
ries of OTX’s expressiveness; OTX was
not made for this. It has been shown in
practice that the testing logic stored in
OTX should approximately correspond
to the technical knowledge of an adept
person responsible for a component.

Once the testing logic is clearly deli-
mited, completeness also includes that
all elements referenced in OTX are pre-
sent and accessible. For example, one
could call a procedure that does not
exist in OTX at all, but is somehow lin-
ked to the external method of a test
standards library at runtime.

Target system independence

OTX must not contain any target system
dependent data. Otherwise it may be
valid but is not exchangeable. Target sys-
tem independence begins where speci-
fic environments with specific imple-

mentations are needed to execute the
sequence. Since a sequence is always
executed on a target system, this de-
pendency exists in all cases. The confi-
guration data required for this cannot
not be within but must be stored outsi-
de the OTX documents; see OTX map-
ping below.

A place where target system depen-
dent data can be stored is what are cal-
led metadata. Metadata can be stored
on almost all elements in OTX, thereby
transporting additional data such as re-

lease versions or procedure identificati-
ons at will within the OTX document.
However, these data are not permitted
to influence the runtime behaviour of
the testing logic. A simple test: After er-
asing all metadata, the sequence still
has to be executable and the runtime
behaviour is not permitted to change.

The interface between OTX and the
outside world (procedure parameters,
context and status variables, screen pa-
rameters etc.) is another potential door-
way for target system dependence. On-
ly convertible data types such as Boole-
an, integer, float, string, bytefield, list,
map, enumeration and structure may be
used here.

In summary, it can be said that OTX
data input is only truly compliant with
the ISO 13209 standard if it is valid,
complete and target system indepen-
dent. All tools from the company EMO-
TIVE generate and process standard-

compliant OTX exclusively. That being
said, there certainly are meaningful ca-
ses using valid OTX that is incomplete
and target system dependent. However,
exchangeability across process bounda-
ries with different tool landscapes is
then no longer assured.

Exchangeability and
tool integration

EMOTIVE has made major efforts in re-
cent years to implement this standard in

Figure 1: Exchangeable levels of the EMOTIVE OTX Runtime. © emotive

© Carl Hanser Verlag, Munich. Reproductions, even in extracts, are non permitted without licensing by the publisher.

HANSER automotive 8/20204 © Carl Hanser Verlag, München

practice. A completely new runtime en-
vironment for OTX (OTX Runtime) is
available, developed with the require-
ment of enabling exchangeability on all
meaningful levels; see Figure 1.

To execute OTX, the OTX Runtime
API has to be integrated into an applica-
tion. OTX projects (PTX files) can be loa-
ded via the API, their data structure de-
termined (browsing) and procedures
started. The OTX Runtime API is availa-
ble in three technologies – C++, DotNet
and Java – so it can be implemented
within practically any existing technolo-
gy. A runtime context is generated upon
starting a procedure. It is the heart of
the runtime environment. The actual
execution of OTX takes place here. It as
well as all underlying layers are written
in native C++ for high performance and
resource-saving in any target architectu-
re, such as desktop, web or embedded.

Diagnostics communication

The OTX Runtime also works on the
available standalone Diag Manager for
diagnostics communication. Its task is
to translate all OTX commands relevant
for diagnostics to the commands of a
specific diagnostics runtime system. It
can work as a server so that parallel di-
agnostics from discretionary processes
or applications are possible. The server
serialises the commands of the clients
and passes them on to the Command
Processor. The Command Processor op-
timises and prioritises the diagnostics
commands. For example, the Command
Processor administers the open diag-
nostics channels. The Command Pro-
cessor is exchangeable. This allows
users to implement their own, specific
administration of the communication
channels or diagnostics services. The

Command Processor sends its com-
mands to the Diag Runtime system. The
actual translation from OTX to the speci-
fic methods of a diagnostics runtime
system, for instance according to ISO
22900–3 (MVCI), takes place in the Diag
Runtime system. This step is entirely ex-
changeable as well. Here users can in-
dependently connect to their own, pro-
prietary diagnostics runtime systems.

But OTX does more than just diag-
nostics communication. OTX includes
various extensions for interacting with
other external systems:
W CommonDialogs
W Context and StateVariable
W ExternalServiceProvider
W HMI
W i18n
W Logging
W Measure
W SQL
W TestResultHandling

These extensions are not implemented
within the OTX Runtime, but externally
in what is called the custom implemen-
tation. Interfaces that users can imple-
ment themselves are provided for this
purpose in the OTX Runtime API. EMO-
TIVE supplies standard implementati-
ons for these interfaces. It is therefore
possible to seamlessly integrate and
execute OTX in any target system. The
same OTX sequence can be executed in
a web application with an HTML Screen
connection or in a vehicle infotainment
system.

Functional exchangeability

In order to execute OTX testing logic on
a target system, external OTX calls have
to be bound to specific functions in the
target system. EMOTIVE calls this OTX

mapping; see Figure 2. All mapping in-
formation required for a target system is
stored in a file. The same OTX testing lo-
gic can run in various target environ-
ments, simply by exchanging this file.

In OTX mapping, screens (corres-
ponding to a screen signature and its pa-
rameters in OTX) are, for example,
bound to appropriate classes of a Dot-
Net assembly that represents a window
in WPF technology or, in another case,
bound to an HTML template that descri-
bes a page in the Internet browser.

Conclusion

Provided that compliance with the stan-
dard is consistently observed from crea-
tion to execution, OTX is unrivalled for
exchanging quality proved testing
knowledge across process and tool
boundaries. OTX can ensure that the sa-
me unaltered testing logic is executable
at all times in any target system and
leads to the same results.

The new OTX runtime environment
from EMOTIVE guarantees platform in-
dependent exchangeability on all mea-
ningful levels. W (oe)
www.emotive.de

Figure 2: Functional exchangeability (OTX mapping). © emotive

Dr. Jörg Supke is the CEO
of emotive GmbH & Co. KG,
73760 Ostfildern.

DEVELOPMENT DEVELOPMENT TOOLS

© Carl Hanser Verlag, Munich. Reproductions, even in extracts, are non permitted without licensing by the publisher.

